A prototype symbolic model of canonical functional neuroanatomy of the motor system

نویسندگان

  • Ion-Florin Talos
  • Daniel L. Rubin
  • Michael Halle
  • Mark A. Musen
  • Ron Kikinis
چکیده

Recent advances in bioinformatics have opened entire new avenues for organizing, integrating and retrieving neuroscientific data, in a digital, machine-processable format, which can be at the same time understood by humans, using ontological, symbolic data representations. Declarative information stored in ontological format can be perused and maintained by domain experts, interpreted by machines, and serve as basis for a multitude of decision support, computerized simulation, data mining, and teaching applications. We have developed a prototype symbolic model of canonical neuroanatomy of the motor system. Our symbolic model is intended to support symbolic look up, logical inference and mathematical modeling by integrating descriptive, qualitative and quantitative functional neuroanatomical knowledge. Furthermore, we show how our approach can be extended to modeling impaired brain connectivity in disease states, such as common movement disorders. In developing our ontology, we adopted a disciplined modeling approach, relying on a set of declared principles, a high-level schema, Aristotelian definitions, and a frame-based authoring system. These features, along with the use of the Unified Medical Language System (UMLS) vocabulary, enable the alignment of our functional ontology with an existing comprehensive ontology of human anatomy, and thus allow for combining the structural and functional views of neuroanatomy for clinical decision support and neuroanatomy teaching applications. Although the scope of our current prototype ontology is limited to a particular functional system in the brain, it may be possible to adapt this approach for modeling other brain functional systems as well.

منابع مشابه

Dynamic Assessment( DA) and Evaluation of Problem-solving Skills in Childeren

  Introduction: The term dynamic assessment (DA) refers to an assessment, by an active teaching process, of a child's perception, learning, thinking, and problem solving. The process is aimed at modifying an individual's cognitive functioning and observing subsequent changes in learning and problem-solving patterns within the testing situation. DA has been advocated as an alternative and/or sup...

متن کامل

Sensor-less Vector Control of a Novel Axial Field Flux-Switching Permanent-Magnet Motor with High-Performance Current Controller

Axial field flux switching motor with sandwiched permanent magnet (AFFSSPM) is a novel of flux switching motor. Based on the vector control method, the mathematical model of the AFFSSPM is derived and the operating performance of the AFFSSPM in the overall operating region is investigated.A novel control method for the AFFSSPM drive system, including the id =0, maximum torque per ampere, consta...

متن کامل

Functional neuroanatomy of the basal ganglia.

The "basal ganglia" refers to a group of subcortical nuclei responsible primarily for motor control, as well as other roles such as motor learning, executive functions and behaviors, and emotions. Proposed more than two decades ago, the classical basal ganglia model shows how information flows through the basal ganglia back to the cortex through two pathways with opposing effects for the proper...

متن کامل

Hybrid Fuzzy Algorithm for the Novel Yokeless Axial Flux-Switching Permanent-Magnet Motor

Flux switching permanent magnet synchronous motor (FMSM) has the characteristics such as large output torque, fast speed response and high reliability, so it can be widely used in the field of high-performance and high precision control.In the permanent magnet synchronous motor control system, the speed loop usually adopts the PI control algorithm. Although the PI control algorithm is relativel...

متن کامل

Robust Adaptive Fuzzy Sliding Mode Control of Permanent Magnet Stepper Motor with Unknown Parameters and Load Torque

In this paper, robust adaptive fuzzy sliding mode control is designed to control the Permanent Magnet (PM) stepper motor in the presence of model uncertainties and disturbances. In doing so, the nonlinear model is converted to canonical form, then, for designing the controller, the robust sliding mode control is designed to decrease the effects of uncertainties and disturbances. A class of fuzz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • Journal of biomedical informatics

دوره 41 2  شماره 

صفحات  -

تاریخ انتشار 2008